Blind Source Separation by Sparse Decomposition in a Signal Dictionary
نویسندگان
چکیده
The blind source separation problem is to extract the underlying source signals from a set of linear mixtures, where the mixing matrix is unknown. This situation is common in acoustics, radio, medical signal and image processing, hyperspectral imaging, and other areas. We suggest a two-stage separation process: a priori selection of a possibly overcomplete signal dictionary (for instance, a wavelet frame or a learned dictionary) in which the sources are assumed to be sparsely representable, followed by unmixing the sources by exploiting the their sparse representability. We consider the general case of more sources than mixtures, but also derive a more efficient algorithm in the case of a nonovercomplete dictionary and an equal numbers of sources and mixtures. Experiments with artificial signals and musical sounds demonstrate significantly better separation than other known techniques.
منابع مشابه
Extraction of a source from multichannel data using sparse decomposition
It was discovered recently that sparse decomposition by signal dictionaries results in dramatic improvement of the qualities of blind source separation. We exploit sparse decomposition of a source in order to extract it from multidimensional sensor data, in applications where a rough template of the source is known. This leads to a convex optimization problem, which is solved by a Newton-type m...
متن کاملBlind Source Separation via Multinode Sparse Representation
We consider a problem of blind source separation from a set of instantaneous linear mixtures, where the mixing matrix is unknown. It was discovered recently, that exploiting the sparsity of sources in an appropriate representation according to some signal dictionary, dramatically improves the quality of separation. In this work we use the property of multi scale transforms, such as wavelet or w...
متن کاملRepresentation of Digital Images Using K-SVD Algorithm
In recent years, sparse representation of signal has drawn a great interest. The assumption that natural signals like images admit sparse decomposition over a redundant dictionary leads to efficient algorithms for handling such sources of data. Applications of sparse representation are compression, regularization of inverse problems, feature extraction, noise reduction, pattern classification a...
متن کاملSpeech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملMulti-channel Image Source Separation by Dictionary Update Method
In real world, a large set of mixed signals are available from which each source signal need to be recovered and this problem can be addressed with adaptive dictionary method. In the case of multichannel observations sparsity found to be very useful for source separation. The problem exist is that in most cases the sources are not sparsified in their domain and it will become necessary to spars...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 13 4 شماره
صفحات -
تاریخ انتشار 2001